Strain-specific impact of PsaR of Streptococcus pneumoniae on global gene expression and virulence.
نویسندگان
چکیده
Previous studies have indicated that PsaR of Streptococcus pneumoniae is a manganese-dependent regulator, negatively affecting the expression of at least seven genes. Here, we extended these observations by transcriptome and proteome analysis of psaR mutants in strains D39 and TIGR4. The microarray analysis identified three shared PsaR targets: the psa operon, pcpA and prtA. In addition, we found 31 genes to be regulated by PsaR in D39 only, most strikingly a cellobiose-specific phosphotransferase system (PTS) and a putative bacteriocin operon (sp0142-sp0146). In TIGR4, 14 PsaR gene targets were detected, with the rlrA pathogenicity islet being the most pronounced. Proteomics confirmed most of the shared gene targets. To examine the contribution of PsaR to pneumococcal virulence, we compared D39 and TIGR4 wild-type (wt) and psaR mutants in three murine infection models. During colonization, no clear effect was observed of the psaR mutation in either D39 or TIGR4. In the pneumonia model, small but significant differences were observed in the lungs of mice infected with either D39wt or DeltapsaR: D39DeltapsaR had an initial advantage in survival in the lungs. Conversely, TIGR4DeltapsaR-infected mice had significantly lower bacterial loads at 24 h only. Finally, during experimental bacteraemia, D39DeltapsaR-infected mice had significantly lower bacterial loads in the bloodstream than wt-infected mice for the first 24 h of infection. TIGR4DeltapsaR showed attenuation at 36 h only. In conclusion, our results show that PsaR of D39 and TIGR4 has a strain-specific role in global gene expression and in the development of bacteraemia in mice.
منابع مشابه
Co2+-dependent gene expression in Streptococcus pneumoniae: opposite effect of Mn2+ and Co2+ on the expression of the virulence genes psaBCA, pcpA, and prtA
Manganese (Mn(2+))-, zinc (Zn(2+))- and copper (Cu(2+)) play significant roles in transcriptional gene regulation, physiology, and virulence of Streptococcus pneumoniae. So far, the effect of the important transition metal ion cobalt (Co(2+)) on gene expression of S. pneumoniae has not yet been explored. Here, we study the impact of Co(2+) stress on the transcriptome of S. pneumoniae strain D39...
متن کاملOpposite Effects of Mn and Zn on PsaR-Mediated Expression of the Virulence Genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae
Homeostasis of Zn and Mn is important for the physiology and virulence of the human pathogen Streptococcus pneumoniae. Here, transcriptome analysis was used to determine the response of S. pneumoniae D39 to a high concentration of Zn . Interestingly, virulence genes encoding the choline binding protein PcpA, the extracellular serine protease PrtA, and the Mn uptake system PsaBC(A) were strongly...
متن کاملOpposite effects of Mn2+ and Zn2+ on PsaR-mediated expression of the virulence genes pcpA, prtA, and psaBCA of Streptococcus pneumoniae.
Homeostasis of Zn(2+) and Mn(2+) is important for the physiology and virulence of the human pathogen Streptococcus pneumoniae. Here, transcriptome analysis was used to determine the response of S. pneumoniae D39 to a high concentration of Zn(2+). Interestingly, virulence genes encoding the choline binding protein PcpA, the extracellular serine protease PrtA, and the Mn(2+) uptake system PsaBC(A...
متن کاملConvergence of regulatory networks on the pilus locus of Streptococcus pneumoniae.
The rlrA pilus locus of Streptococcus pneumoniae is an example of a pathogenicity island acquired through genetic recombination. Many acquired genetic elements commandeer preexisting networks of the new organism for transcriptional regulation. We hypothesized that the rlrA locus has integrated into transcriptional regulatory networks controlling expression of virulence factors important in adhe...
متن کاملReal-time RT PCR Evaluation of the Xylitol Effect on the Expression of Streptococcus pneumoniae cpsB,cpsD and psaA Genes
Background and Objective: The major pneumococcal pathogenesis factor is the capsular polysaccharide. the production of polysaccharide is regulated by cpsB and cpsD genes. Thus, every agent that induce or inhibition of expression of these genes probably increased pathogenesis of bacteria, intracellular survival and vis versa. The aim of this study was to assay the effect of Xylitol on Streptococ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microbiology
دوره 155 Pt 5 شماره
صفحات -
تاریخ انتشار 2009